skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shin, Jaeoh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Complex DNA topological structures, including polymer loops, are frequently observed in biological processes when protein molecules simultaneously bind to several distant sites on DNA. However, the molecular mechanisms of formation of these systems remain not well understood. Existing theoretical studies focus only on specific interactions between protein and DNA molecules at target sequences. However, the electrostatic origin of primary protein–DNA interactions suggests that interactions of proteins with all DNA segments should be considered. Here we theoretically investigate the role of non-specific interactions between protein and DNA molecules on the dynamics of loop formation. Our approach is based on analyzing a discrete-state stochastic model via a method of first-passage probabilities supplemented by Monte Carlo computer simulations. It is found that depending on a protein sliding length during the non-specific binding event three different dynamic regimes of the DNA loop formation might be observed. In addition, the loop formation time might be optimized by varying the protein sliding length, the size of the DNA molecule, and the position of the specific target sequences on DNA. Our results demonstrate the importance of non-specific protein–DNA interactions in the dynamics of DNA loop formations. 
    more » « less
  3. Molecular search phenomena are observed in a variety of chemical and biological systems. During the search, the participating particles frequently move in complex inhomogeneous environments with random transitions between different dynamic modes. To understand the mechanisms of molecular search with alternating dynamics, we investigate the search dynamics with stochastic transitions between two conformations in a one-dimensional discrete-state stochastic model. It is explicitly analyzed using the first-passage time probability method to obtain a full dynamic description of the search process. A general dynamic phase diagram is developed. It is found that there are several dynamic regimes in the molecular search with conformational transitions, and they are determined by the relative values of the relevant length scales in the system. Theoretical predictions are fully supported by Monte Carlo computer simulations. 
    more » « less